Pathways to motor neuron degeneration in transgenic mouse models.

نویسندگان

  • Janice Robertson
  • Jasna Kriz
  • Minh Dang Nguyen
  • Jean-Pierre Julien
چکیده

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder characterized by the selective loss of motor neurons. A pathological hallmark of both sporadic and familial ALS is the presence of abnormal accumulations of neurofilament and peripherin proteins in motor neurons. In the past decade, transgenic mouse approaches have been used to address the role of such cytoskeletal abnormalities in motor neuron disease and also to unravel the pathogenesis caused by mutations in the gene coding for superoxide dismutase 1 (SOD1) that account for ~20% of familial ALS cases. In mouse models, disparate effects could result from different types of intermediate filament (IF) aggregates. Perikaryal IF accumulations induced by the overexpression of any of the three wild-type neurofilament proteins were quite well tolerated by motor neurons. Indeed, perikaryal swellings provoked by NF-H overexpression can even confer protection against toxicity of mutant SOD1. Other types of IF aggregates seem neurotoxic, such as those found in transgenic mice overexpressing either peripherin or an assembly-disrupting NF-L mutant. Moreover, understanding the toxicity of SOD1 mutations has been surprisingly difficult. The analysis of transgenic mice expressing mutant SOD1 has yielded complex results, suggesting that multiple pathways may contribute to disease that include the involvement of non-neuronal cells.

منابع مشابه

Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers.

Transgenic (Tg) mouse models of FALS containing mutant human SOD1 genes (G37R, G85R, D90A, or G93A missense mutations or truncated SOD1) exhibit progressive neurodegeneration of the motor system that bears a striking resemblance to ALS, both clinically and pathologically. The most utilized and best characterized Tg mice are the G93A mutant hSOD1 (Tg(hSOD1-G93A)1GUR mice), abbreviated G93A. In t...

متن کامل

Disruption of Dynein/Dynactin Inhibits Axonal Transport in Motor Neurons Causing Late-Onset Progressive Degeneration

To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting...

متن کامل

Defective axonal transport in motor neuron disease.

Several recent studies have highlighted the role of axonal transport in the pathogenesis of motor neuron diseases. Mutations in genes that control microtubule regulation and dynamics have been shown to cause motor neuron degeneration in mice and in a form of human motor neuron disease. In addition, mutations in the molecular motors dynein and kinesins and several proteins associated with the me...

متن کامل

Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo.

The mechanism of selective and age-dependent motor neuron degeneration in human amyotrophic lateral sclerosis (ALS) has not been defined and the role of glutathione (GSH) in association with motor neuron death remains largely unknown. A motor neuron-like cell culture system and a transgenic mouse model were used to study the effect of cellular GSH alteration on motor neuron cell death. Exposure...

متن کامل

Genetic Background Effects on Disease Onset and Lifespan of the Mutant Dynactin p150Glued Mouse Model of Motor Neuron Disease

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease primarily affecting motor neurons in the central nervous system. Although most cases of ALS are sporadic, about 5-10% of cases are familial (FALS) with approximately 20% of FALS caused by mutations in the Cu/Zn superoxide dismutase (SOD1) gene. We have reported that hSOD1-G93A transgenic mice modeling this disease show a more se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Biochimie

دوره 84 11  شماره 

صفحات  -

تاریخ انتشار 2002